

## **Detection of Wheelchair Orientation in Human-Robot Interactions**

## Jessica Y. Bo<sup>1</sup>, H. F. Machiel Van der Loos<sup>1</sup>

University of British Columbia, Canada<sup>1</sup>,

## ABSTRACT

**BACKGROUND**: Autonomous mobile robots are being introduced in human-populated environments with increasing frequency, notably in hospitals and long-term care facilities. Hence, ensuring safe and intuitive human robot interaction (HRI) is becoming a growing need, especially for pedestrians with mobility aids, such as wheelchairs.

**OBJECTIVE**: The dynamics of wheelchair users differ from those of foot pedestrians, so accurate characterization of a wheelchair's location and orientation for state estimation is crucial.

**METHODS**: The 2D laser scanner is a well-suited sensor for accurate distance measurements with fast computation speeds, but the sparsity of its data is often a hindrance to effective object detection. Despite so, 2D range data from laser scanners is found to be effective in the detection and orientation estimation of wheelchairs, even in cluttered environments.

**RESULTS**: The range data is pre-processed by segmenting out objects using density-based clustering. The two-step classification algorithm first identifies wheelchair candidates from segmented objects with the random forest classifier, then estimates the wheelchair's orientation as one of six classes with a neural network. The models achieve 98% true positive rate for detection and 86% for orientation classification.

**CONCLUSIONS**: The outcomes of this research can inform future works in building a real time wheelchair detection and state estimation for mobile robots.

**KEYWORDS:** mobile robots, pedestrian detection, human robot interaction.